SET and MYND Domain-Containing Protein 3 (SMYD3) Polymorphism as a Risk Factor for Susceptibility and Poor Prognosis in Ovarian Cancer
نویسندگان
چکیده
BACKGROUND We investigated the relationship of the polymorphisms of SET and MYND domain-containing protein 3 (SMYD3) with risk and prognosis of ovarian cancer. MATERIAL AND METHODS The polymerase chain reaction (PCR) amplification method was applied to detect the polymorphisms of variable number of tandem repeats (VNTR) in the SMYD3 gene promoter region for 156 patients with ovarian cancer (case group) and 174 healthy people (control group). Quantitative reverse transcription polymerase chain reaction and Western blot were applied to detect SMYD3 mRNA and protein expressions. RESULTS The frequencies of VNTR genotype 3/3 and allele genotype 3 in the case group were significantly higher than those in the control group, while the frequency of genotype 2/2 in the control group was significantly higher than that in case group (all P<0.05). The proportion of poorly differentiated patients carrying VNTR genotype 3/3 was significantly higher than the proportion of poorly differentiated patients carrying VNTR genotype 2/2+2/3, while the proportion of patients carrying genotype 3/3 with International Federation of Gynecology and Obstetrics (FIGO) stage III-IV disease was significantly higher than the proportion of patients carrying genotype 2/2 +2/3 with FIGO stage III-IV disease (all P<0.05). SMYD3 mRNA and protein expressions were higher in the patients carrying genotype 3/3 than they were in the patients with the 2/2+2/3 genotype (all P<0.05). The 5-year survival rate for patients carrying VNTR genotype 3/3 was significantly lower than that of patients carrying genotype 2/2+2/3, and Cox regression analysis showed that VNTR genotype 3/3 was an independent risk factor for ovarian cancer prognosis (all P<0.05). CONCLUSIONS VNTR genotype 3/3 of the SMYD3 gene was associated with the risk of ovarian cancer. The polymorphism of VNTR genotype could be recognized as an indicator for the poor prognosis of patients with ovarian cancer.
منابع مشابه
Correlations of EZH2 and SMYD3 gene polymorphisms with breast cancer susceptibility and prognosis
The aim of the present study was to investigate the correlation of enhancer of Zeste homolog 2 (EZH2) and SET and MYND domain containing 3 (SMYD3) gene polymorphisms with breast cancer susceptibility and prognosis. A total of 712 patients with breast cancer and 783 healthy individuals were selected. Normal breast epithelial cells MCF-10A and breast cancer cells MCF-7, MDA-MB-231, T47D, and Bcap...
متن کاملElevated Levels of SET and MYND Domain-Containing Protein 3 Are Correlated with Overexpression of Transforming Growth Factor-β1 in Gastric Cancer.
BACKGROUND The aim of this study was to investigate the messenger RNA and protein expressions of SET and MYND domain-containing protein 3 (SMYD3) and transforming growth factor-β1 (TGF-β1) in gastric cancer (GC) and to explore the correlations between these proteins and the biologic behavior of GC. STUDY DESIGN Expressions of SMYD3 and TGF-β1 were detected by real-time quantitative reverse tr...
متن کاملSET and MYND domain containing protein 3 in cancer.
Lysine methylation plays a vital role in histone modification. Deregulations of lysine methyltransferases and demethylases have been frequently observed in human cancers. The SET and MYND domain containing protein 3 (SMYD3) is a novel histone lysine methyltransferase and it functions by regulating chromatin during the development of myocardial and skeletal muscle. It has been recently unveiled ...
متن کاملSET and MYND domain-containing protein 3 is overexpressed in human glioma and contributes to tumorigenicity.
SET and MYND domain-containing protein 3 (SMYD3) is a histone H3 lysine 4 (H3K4) di- and tri-methyltransferase that forms a transcriptional complex with RNA polymerase II and plays an important role in early embryonic lineage commitment through the activation of lineage-specific genes. SMYD3 activates the transcription of oncogenes and cell cycle genes in gastric and breast cancer cells. Howeve...
متن کاملThe lysine methyltransferase SMYD3 interacts with hepatitis C virus NS5A and is a negative regulator of viral particle production
Hepatitis C virus (HCV) is a considerable global health and economic burden. The HCV nonstructural protein (NS) 5A is essential for the viral life cycle. The ability of NS5A to interact with different host and viral proteins allow it to manipulate cellular pathways and regulate viral processes, including RNA replication and virus particle assembly. As part of a proteomic screen, we identified s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 22 شماره
صفحات -
تاریخ انتشار 2016